	 	 $\neg \Box$	
USN			

Second Semester M.C.A Degree Examination, January/February 2005 **Master of Computer Applications**

Computational Techniques

Time: 3 hrs.]

[Max.Marks: 100

W

Note: 1. Answer any FIVE full questions. 2. All questions carry equal marks.

(8 Marks)

1. (a) Explain with an example each: i) Absolute error

iii) Truncation error

ii) Relative error

iv) Round off error.

- (b) If $f = \frac{4xy^2}{x^3}$ and errors in x, y, z are 0.001, compute the relative maximum (6 Marks) error in \tilde{f} when x = y = z = 1.
- (c) Find the number of terms of the exponential series such that their sum gives the value of e^x correct to six decimal places at x = 1.
- 2. (a) Explain the Bisection method for computing a root of f(x) = 0 which lies in [a,b]. Find a root of the equation $x^3 - 4x - 9 = 0$ that lies between 2 and 3 (8 Marks) using Bisection method in four stages.
 - (b) Show that Newton Raphson method is quadratically convergent. (6 Marks)
 - (c) Find the root of the equation $xe^x = cosx$ using the secant method correct to four decimal places.
- 3. (a) Find the real root of the equation $x^3 2x 5 = 0$ to three significant digits using Newton Raphson method.
 - (b) Give the algorithmic description of solving an algebraic equation f(x)=0 in (10 Marks) (a,b) using method of false position.
- 4. (a) Write algorithm to solve a system of algebraic equations of Gauss seidel method. (10 Marks)
 - (b) Compute the solution of the following system of equations using Gauss elimination method.

$$x + y + z = 9$$

 $x - 2y + 3z = 8$
 $2x + y - z = 3$ (10 Marks)

5. (a) Apply Gauss Jordan method to solve the system of equations:

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$ (10 Marks)

Contd.... 2

Srinivas Institute of Technology

Library, Mangalore

Page No... 2

MCA22

(b) Employ crout's method to solve the following system of equations:

$$x + y + z = 1$$
$$3x + y - 3z = 5$$
$$x - 2y - 5z = 10$$

(10 Marks)

6. (a) Fit a straight line of the form y = a + bx by the method of Least Squares to the following data: (8 Marks)

х	0	1	3	6	8
у	1	3	2	5	4

(b) Given:

X	1	4	3	0
f(x)	0	24	12	-12

Find the value of f(2) using Lagrange's interpolation formula.

(6 Marks)

(c) Using Newton Divided difference formula evaluate y when x = 2, given

х	0	1	5	
У	8	68	123	

(6 Marks)

7. (a) Given:

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
У	2.72	3.32	4.06	4.96	6.05	7.39	9.02

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x=1.2$

(8 Marks)

(b) Evaluate $\int_7^x f(x) dx$ by Trapezoidal rule using the following table :

Х	1	2	3	4	5	6	7
y .	2.105	2.808	3.614	4.604	5.857	7.451	9.467

(6 Marks)

- (c) Evaluate $\int_0^6 3x^2 dx$ dividing the interval [0,6] into six equal parts by applying Simpson's 3/8th rule. (6 Marks)
- **8.** (a) Using modified Euler's method find y(0,2) correct to 4 decimal places solving the equation $\frac{dy}{dx}=x-y^2,\ y(0)=1$ taking h=0.1 (10 Marks)
 - (b) Write a algorithm of Runge Kutta method of order four. Use this method to find y at x=0.1 given that $\frac{dy}{dx}=3e^x+2y,\ y(0)=0$ and h=0.1. (10 Marks)